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PART 9

AN OVERVI EW OF SCI ENTI FI C UNCERTAI NTI ES I N BENEFI T ESTI MATI ON

John S. Evans
Kat heri ne \Wal ker

|. I NTRODUCTI ON

The basic conmponents of quantitative risk assessnent are
exposure assessment and hazard assessment. Exposure assessnent
i nvol ves estimation of the concentrations of pollutants to which
i ndividuals or populations are exposed. Hazard assessnent is
concerned with estimation of the health risks associated with
given patterns of exposure.

For an exposure to occur one Or nore persons nmust cone into
contact with the pollutant. Therefore, exposure assessnent
involves (at least inplicitly) not only determ nation of the
spatial and tenporal pattern of pollutant concentrations but also
anal ysis of human activity patterns. See, for exanple
Ot (1980) and Duan (1981). The spatial and tenporal aspects of
the field of pollutant concentrations are typically estianted by
measurenent, nodelling or some conbination of the two.

Hazard assessment is the determnation of the health risks
posed by exposure to the pollutant concentrations obtained from
the exposure analysis. The steps involved in hazard assessnent
depend largely on the type of toxicity being considered

(carcinogenic or noncarcinogenic) but generally include
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estimation of dose and the toxic potency of the pollutant.
Determ nation of the human potency of pollutants itself may

i nvol ve several steps -- e.g., determnation of animal potency,
extrapolation from animal to man, and extrapolation from high to
| ow dose.

Each step in risk assessnent involves sone uncertainty, and
the uncertainties in each phase of the analysis conbine to
produce a final risk estimate which is uncertain. Severa
nmet hods are available for analysis of the propagation or
cascading of uncertainty. To illustrate the propagation of
error, we introduce a sinple nodel which has been used by Crouch

and Wlson (1981) to estimate the risk:
P = aCB (1)

where B8 is the human potency (cases per ng/kg per day), Cis the
concentration of the pollutant in the nedia of interest to which
peopl e are exposed (mg/m3 in air or ng/1 in water), and o is the
paraneter which relates exposure to dose rate ((ng/kg per day)
per mg/m3 in air or (ng/ kg per day) per ng/l in water).

In a sinple nultiplicative nodel such as this, the
propagation of error may be analyzed with Gauss' Law of Error

Propagati on:

0; R (CB)? o2 + (0B)? o2 + (aC)? cé (2)
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whi ch may be re-expressed as:

o ’ o, : 022 o ’ (3)

Thus if (9,/¢) = 0.05, (¢./C) = 0.10, and (0p/8) = 0.30:

L
2

g
—F [0.0025 + 0.0100 + o.ogooJ =0. 32 (4)

In risk assessment, however, it is comon for uncertainties to be
large in comparison with central estimtes of paraneters.
Al though, as Seiler (1982) has denonstrated, Gauss' Law of Error
Propagati on can be extended to cover large errors, a nore conmmon
form of error analysis involves the use of | ognornal
distributions to characterize key paraneters. See, for exanple
Crouch and Wlson (1981). If the uncertainties in o C and B are
characterized as |ognornal, then

OinP - 0JZ.nB + 0]Z.nC + 0ins (5)
And, if for example o« is known to within a factor of 1.2, Cis
known to within a factor of 2.0, and gis known to within a

factor of 5.0 (i.e., o = 0.18, o, . = 0.69 and = 1.61),

Gln 1n GlnB

t hen:

L
2
Olp ™ [0.0324 + 0.4761 + 2.5921] = 1.7609 (6)

Equation (6) indicates that the risk, P, could be estimated to

within a factor of el«76 or 5.8 Both (4) and (6) illustrate an
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I nportant general feature of uncertainty analysis -- when one
conponent of error is large relative to other conponents it may
dom nate the uncertainty in the final risk estimate.

O course (1) is highly sinmplified. A somewhat nore

conpr ehensi ve nodel m ght be:

P = (aaCa + awa) EKha Ba (7)

Here, both air and water exposures are considered as well as the
possibility that a potency factor may not be avail able from
epi dem ol ogi cal analysis of human exposures in the range of
concentrations of interest. In this case, a potency factor from
ani mal bi oassay, 8_,, may have to be used in conjunction with an
i nterspecies conversion factor, Ky, and a |ow dose extrapolation
factor, E.  Recognizing that o,C, +a,C is sinply the dose rate,
d, (7) could be re-expressed as a purely multiplicative nodel in
whi ch error propagation could be anal yzed using (3) or (5).

QG her nethods of error analysis are available for nore
conpl ex nmodels of risk. See, for exanple, Fiering et al
(1982). However, it is not our intent to review nethods of error
analysis, but rather to use these sinple approaches to analyze
and illustrate the propagation of uncertainty in risk assessnents
of toxic conmpounds in air and water

The sections which follow discuss the conponents of typica
risk assessnents for toxic compounds: environmental transport

and fate nodelling, dose estimation, epidemology and ani nal
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bi oassay. The focus in each section is on sources of uncer-
tainty. In addition, the problens of interspecies conversion and
| ow- dose extrapolation and the attendant uncertainties are

briefly reviewed.
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. EXPOSURE ASSESSMENT

Exposure assessment often begins with estimation of the
concentrations in air or water which are expected to result from
specified patterns of emssions. The primary tools used in such
estimation are air and water pollution nodels. The basic air and

groundwat er nodel s are discussed bel ow

Air Pollution Dispersion Mdels

Air pollution dispersion nodels provide a |ink between pol -
lutant em ssions and exposures estimates necessary for risk
assessnent. In order to be nost useful, the nodels should pro-
vide data in an appropriate form and for the same conditions
likely to be encountered in situations requiring risk assessnent;

- short and long term averagi ng periods
- receptors near and far from source
- urban and rural areas

- conplex (mountains, valleys, near |arge bodies of water),
and smooth terrain

- non-reactive and reactive pollutants.

The ability of air pollution dispersion nodels to provide
accurate concentration estinmates under all the conditions |isted
above is limted. Gaussian dispersion nodels in particular were
devel oped with certain conditions in mnd, and provide the best
results when these conditions are nmet. By examining briefly the
mat hematical and scientific basis for dispersion nodels, this

section attenpts to pronote an understanding of the conditions
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under which dispersion nodels are nost valid. The section
concludes with estinmates of nodel accuracy reported in the
scientific literature.

Air pollution dispersion nodels nay be divided into two
broad categories -- those suitable for estimating exposures near
to the source and those suited for predicting exposures at |ong
di stances from the source. The neteorol ogical conditions and
processes which govern pollutant transport and dispersion differ
in the near and far field. The exact dividing point between
short and long range is not well defined, but has been estimated
by Turner (1979) to be roughly 50 km

Gaussi an di spersion nodels are nost comonly used for
model ing concentrations within short ranges of a source. The
UNAMAP (User's Network for Applied Mdeling of Air Pollution)
series of Gaussian nodels has been widely used to help current or
proposed sources neet regulatory requirements under the Clean Ar
Act (CAA). Advection-dispersion nodels based on nunerical
approxi mation solutions to advection dispersion equations have
al so been developed and are theoretically better able to sinmulate
t hree- di mensi onal dispersion than their Gaussian counterparts
However, they generally require nore conplete data, are not as
routinely avail able, and have not been verified in as many field
situations as the Gaussian nodels (Mahoney, 1979, and Turner,
1979). They will therefore not be discussed further in this

revi ew
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Table 1. Domains of Validity of Air Pollution Transport Mbdels
SPACE
Long range (regional, mesoscale) >50 km
Near-field/short-range <50 km
TI VE
Short term 3 hr, 24 hr
Long term mont h, year
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The di scussion of long range transport nodels will focus on
t he Lagrangi an (novi ng coordi nate system rather than Eulerian
(fixed coordinate system) numerical advection-dispersion nodels,
again because of the relative limted availability of such nodels
for routine use (Bass, 1981). Several Lagrangi an nodels are
currently operational and easily applied to |long range transport

probl ens (Bass, 1981).

Gaussi an Di spersi on Mdel s

The Gaussi an di spersion nodel has been called the basic
"wor khorse" of air pollution dispersion nodeling (Hanna, et al.,
1982). Wth the passage of the 1970 and 1977 Cean Air Act
amendnents, the requirenments for dispersion nodeling to naintain
air quality and to support new source permts has increased
This increasing demand for nodeling has had the beneficia
effects of spurring the devel opnent of the UNAMAP series and
encouraging better validation and field verification of the
model s.  However, the nodeling demands have al so created the
tenptation to apply nodels to situations for which they are not
particularly valid and to use their results w thout proper regard
for their accuracy. The purpose of this discussion is to develop
an understandi ng of the accuracy of the Gaussi an di spersion

nodel s as applied to various field conditions.
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The basic form of the Gaussian nodel (for a conservative

pol lutant with conplete reflection at the ground surface) is:

2 2
H_
C(X'Y'Z;H):2WGQ0 a eng_fg—'z—s eng- (205) }"‘ exp §-
Y 2 Y z

(8)

(H+z)2}
202
Z

wher e

Cis the time averaged concentration of pollutant
(mass/length3);

X, Yy, and z are the distances downw nd, crossw nd, and
vertically upward, respectively (length);

His the effective source height above ground level (His
equal to the sum of the physical stack height hg and the plunme
rise Ag) (length);

Qis the source strength (mass/tine):
oy Is the standard deviation of the time-averaged plume
concentration distribution in the vertical direction (length);

g is the tinme-averaged wind speed at the |level H
(length/time, usually 10 minute or one hour averages) (Spengler
et al., 1982).

The equation states that the concentration observed at a
given distance froma source is a function of the initial peak
center line concentration, the height of the plume and the
horizon and vertical spread of the plunme. The nodel assunes
conplete reflection of the plunme at the ground surface.

The amount of plume rise, aH, is determined by the plune's
initial momentum and buoyancy and by the stability of the
atmosphere.  The fornulae for calculating plume rise require
I nput of stack physical dimensions, effluent exit velocity,
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tenmperature and density, atnospheric stability data, and nean
wi nd speed at the height of the stack.

The di spersion paraneters y and ,, describe the spread
of the plume in the horizontal and vertical directions as a
function of distance from the source and atnospheric turbul ence,
al though dispersion is a function of both local and larger scale
atmospheric turbulence. For nodeling purposes, turbulence is
nmore commonly characterized in ternms of atnospheric stability;
the greater the stability, the less vertical mxing of the
atmosphere and therefore the |less turbulence. Atnospheric
stability has been divided into seven classes (A-G ranging from
extrenmely unstable (A) to extrenely stable (G. Val ues of y
and , as a function of stability class have been docunmented in
the form of standard curves, the nost comon of which are those
devel oped by Pasquill-Gfford and Turner.

The average w nd speed, G, at stack height is usually not

measured directly but is estinmated from wind speed at 7 to 10

neters above the ground using the power |aw formul a:

p
u, = upg [Tﬁ—-] (9
wher e
z = height to which wind speed extrapol ated
p = paranmeter which varies as the function of stability

class and site (urban/rural)
ujg = Wind speed at 10 neters usually obtained from regiona

weat her station.
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The Gaussian nodel is based on the basic diffusion equations
and a set of sinplifying assunptions which are presented in
Table 2. Wth a few exceptions, these assunptions are not easily
classifiable as "protective" or "unprotective". The conservation
of mass assunption, unless nodified by the use of a decay term
tends to result in the over-estinmation of concentrations. The
use of sinple stability-based dispersion paraneters in conditions
for which dispersion is domnated by other turbul ence factors
(complex terrain, layer scale atnospheric notion) may also result
in the over-estimate of anbient concentrations. The effect of
the other assunptions is dependent upon the conditions under
whi ch the nodel is applied.

Most CGaussian dispersion nodels require simlar neteorol ogi-
cal and em ssions data. The neteorol ogical data required include
wind speed, direction, stability class and m xing | ayer depth.
Mbdel s used for predicting long-term average concentrations may
require nonthly or yearly wi ndroses for speed and direction and
stability classes. Precipitation records may also be necessary
to assess the probability of pollutant wash out near the source.
The em ssions data required includes physical stack paraneters
(height, dianeter), stack gas exit velocity and tenperature, and
source strength

St andardi zed current and historical neasures of surface
| evel and upper air neteorological paraneters are available from
a nunber of national data bases. The National Cimatic Center in
Ashville, North Carolina maintains current and historical records

of measured val ues of wind speed and direction, stability
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Table 2. Basic Assunptions of Gaussian Mdel

Assunpti on

Conment

Plume centerline originates at oi nt,

a
to equilibrium height and is paraFId
to ground

No mass is lost to ground or by
conversi on

Wnd speed is uniform parallel to
ground and constant

No dispersion/diffusion in direction
of wind flow

Concentrations decay from plume
centerline concentration in
Gaussian (bivariate normal) manner
inthe y and z directions

St eady-state em ssions
Concentrations described by Gaussian

form are time-averaged concentrations
(usuall'y over 10 mn. or 1 hour)

Conservative

Conservative
under certain
condi tions

Sources:  Spengler, et al. (1982) , Mhoney (1974)
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cl asses, and upper air paraneters. The Center also tabulates
W ndroses (speed, direction, stability) over five and ten year
periods for use in predicting |ong-term average concentrations.
The National Wather Service (NWS) records wi nd speed and direc-
tion, tenperature, pressure dewpoint, and precipitation on an
hourly basis at stations throughout the country. Upper air
observations of tenperature, humdity, w nd speed and direction
and height of pressure surface levels are obtained from approxi-
mately 130 radi osonde (radio transmtters carried aloft by bal -
loons) and 70 Pilot balloon (PIBAL) stations. Since 1969, the
Envi ronnental Meteorol ogi cal Support Units (MSU) set up by the
NW5 in cooperation with the EPA have provided upper air observa-
tions in 17 major urban areas. Although these sources of data
may not be suitable for all site-specific applications of
Gaussi an nodels, they provide a first approximtion of meteoro-
| ogi cal conditions for nost sites.

On-site neasurenments can be taken to supplenent these data
i f necessary. For instance, when sources are located in conpl ex
terrain -- valleys, nmountains, or near large bodies of water --
regional meteorological data are nore likely to be unrepresenta-
tive of conditions at the site. On-site data do not al ways
assure greater reliability. D sadvantages of on-site data
include potential l|ack of standardized instrument exposure, main-
tenance and calibration, and the lack of long historical records
of climatol ogical paraneters.

Gaussi an di spersion nodels are nost valid when estimates of
pol | utant concentrations relatively near the source are needed.

Mahoney (1974) suggested that the nost appropriate application of
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Gaussian nodels is within 250 neters to 20 km of a source (see
Table 3). At distances close (250 m) to the source, nodels are
| ess capable of accounting for local turbulence effects created
by the presence of the source (building wake and down wash). At
i ncreasing distances fromthe source, large scale notions in the
at nosphere begin to play a nore inportant role in plume transport
and dispersion; these effects are generally not reflected in the
di spersion estimates based on l|local classification of stability.

Gaussi an dispersion nodels have been successfully applied to
both single and nultiple source problens. Turner (1979) catego-
rizes the UNAMAP nodel s into four groups; nodels for continuous
el evated rel eases over relatively level countryside; nodels for
el evated releases in urban areas over relatively level terrain
nmodel s devel oped for non-level terrain; and finally, nodels for
transportation sources. Modeling pollutant dispersion in non-
| evel or conplex terrain is still one of the greatest weaknesses
of Gaussian dispersion nodels, particularly when estimtes of
short term peak exposures are necessary.

Both short- and I ong-term average pollutant concentrations
have been estimated using Gaussi an di spersion nodeling. The
Environnental Protection Agency's National Ambient Air Quality
Standards require averaging periods as short as 1 hour for ozone
and carbon nonoxi de concentration that are not to be exceeded
more than once a year. (Qher standards, such as the nitrogen
dioxide standard, require that concentrations be averaged over

one year
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Table 3. Validity of CGaussian Mdel vs.
Appl i ed

Domain in Wich it is

D st ance

Applicability

Comment s/ Reasons

<250 m

250 m - 2 km

2 - 10 km
10 - 20 km

> 20 km

> 100 km

Questi onabl e useful ness

Some usef ul ness

Best useful ness

Some usef ul

Less useful

Not appropriate

Effect on turbul ence
of local urban

i nfluences (building
wake effects, etc.).

Best reliability of
czr 0y €stimates.

Projections for o,
o} | ess wel |
fgunded.

Little data avail able
for verification of
dilution rate esti-
mat es. Rat e of
vertical plune spread
di m ni shes resulting
in further transport
of plune.

Concentrations con-
trolled by details of
wind trajectories and
vertical m xing.

Sour ce:

Mahoney (1974).
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There are three major sources of error in nodel predictions.
One is the representativeness of the nodel of real conditions --
the ability of the nodel to account for conplexities in emssion
transport, dispersion and chemcal transformation or decay of the
plume that differ fromthe relatively sinple conditions under
which the nmodel was devel oped. The second mmjor source of uncer-
tainty in nmodel predictions lies in the accuracy, resolution and
representativeness of available neteorological and em ssion data
Finally, the world is stochastic and any individual prediction
may be different fromthe actual state of nature sinply by
chance.

A primary limtation of the nodel is that the dispersion
paraneters as a function of stability class do not adequately
account for dispersion that occurs as a result of processes in
the upper atnosphere, changes in neteorological conditions at
greater distances from the source, and in uneven terrain. The
Gaussi an model assumes continuous flow parallel to the ground and
di spersion paraneter estimates are based on enpirical observa-
tions of non-buoyant em ssions over short time periods, |ow
el evations, and stability conditions close to the source (Smth,
1980). Consequently, Gaussian nodels do not generally represent
flow and dispersion well for tall stacks (>150 m, in nountains
or valleys, in urban areas, or near land water interfaces
(Turner, 1979). There are several methods, other than Pasquill -
Gfford, for deriving stability class and dispersion parameters.
Al'though these are nmore accurate, they require data which are not

often avail abl e.
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Because Gaussi an nodel s were devel oped for steady-state
em ssions and continuous flow, they generally do not accurately
descri be exposures from short term rel eases, Estimates for
1 hour or 24 hour peak exposures are then likely to be |ess
accurate than longer term average exposures from continuous
rel eases. The continuous flow assunption also nmeans that
Gaussi an nodel s do not describe dispersion well under calm or
near calm conditions, or when the wind direction is highly
vari abl e.

Gaussi an nodels do not sinmulate well |oss of a poll utant
t hrough processes of chem cal and physical transformation, decay,
rainout, adsorption and inpaction. Sone of the UNAMAP nodel s
have attenpted to account for |osses through all mechani sns by
I ncorporating a single exponential decay term (Turner, 1979).
This inability to account for pollutant |osses is one of the nost
I nportant sources of uncertainty for nodels dealing with |arge
residence times (large regions or long averaging tines);
al t hough di spersion dom nates pollutant concentrations in the
early stages after em ssion, chem cal and physical transforna-
tions play an increasingly inportant role after a few hours or
days (Mahoney, 1974, Smith, 1980). Consequently, unless nodels
are calibrated, the assunption of no or limted |oss for sub-
stances which are in reality reactive is likely to be quite
conservati ve.

Wi | e neteorol ogi cal data necessary to run Gaussi an di sper-
sion nodels is readily available from national and regiona
dat abases, the data are not necessarily representative of the

site being nodeled. The differences between vertical w nd speed
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profile, the prevailing winds, and stability classes may be quite
marked even over distances of a few miles. Meteorol ogic data
taken at stations |ocated near |large bodies of water or at rura

| ocations can be particularly unrepresentative of conditions at
inland or urban sites.

Wnd direction is one of the nost significant sources of
error in nodel predictions, particularly of short term exposures
or exposures at specific receptor sites. Longer term average
exposures are determned on the basis of historical w ndrose
tabul ations and tend to be nore accurate. |npaccuracies in pre-
dictions of wind direction may result from using regional rather
than site-specific meteorol ogical data or from use of surface
wind data to predict wind direction at the height of the plume
centerline. Wnd direction changes as a function of height, so
surface wind data nay not accurately describe the direction of
plume transport, especially in the case of highly elevated
sour ces.

Errors in wind speed can also contribute to uncertainty in
exposure predictions. The use of power law calculations to
extrapolate from wi nd speeds neasured at 7-10 nmeters to severa
10's of meters can be inaccurate especially for short averaging
periods (Turner, 1979).

Several authors have studied the accuracy of various
Gaussi an nodels (Table 4). The table is not exhaustive; it
provi des rough estinmates of accuracy for best and worst condi-
tions. The estinmates of accuracy range from 10-20% for "research

grade" predictions to over 100% for nore typical applications
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Tabl e 4. Error Estinates for Gaussi an ©Model s

Condi ti on Percentage Error Sour ce
1) Research grade observations 10- 20% Pasqui | |
from near surface sources, (1979)

flat terrain
2) Most "real world" applica-
tions to elevated plunes
with few supporting
nmet er ol ogi ¢ data
a) 1 hour average 100% Pasqui | |
(1974)
>100% Ruf f
(1980)
Bowne
(1981)
b) long term average £20% Pasqui | |
(1974)
¢) urban regional +20% Mahoney
average concentrations (1974)
3) Miltiple source nodel 20- 100% Mahoney

(various conditions)

Sources:  Anerican Meterological Society (1981)
Mahoney, J.R (1974)
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As m ght be expected, predictions becone nore accurate as aver-
aging times and areas increase. These results were presented in
most cases W thout specific reference to the pollutants being

nodel ed, but are probably nost representative of inert tracers.

It is likely that errors would be greater for applications

involving highly reactive pollutants.

Long- Range Transport Model s

The need for long range transport nodel s has been growing in
recent years because of concerns about the role of |ong distance
transport of sulfur and nitrogen oxides in acid rain and the
contribution of distant sources to the degradation of visibility
in our national parks (Bass, 1981, Hanna, et al., 1982). Long
range transport nodels may also have an inportant role to play in
ri sk assessment.

Long-range transport nodels are not as well devel oped as
Gaussi an di spersion nodels. One reviewer noted that there is "no
definitive nodel for long-range transport and diffusion" (Hanna,
et al., 1982). The nodels are in their "adol escent" stage,
"promsing, but not mature" and therefore have a sonewhat limted
history of application (Bass, 1981).

O the long-range transport nodels that have been devel oped
the Lagrangi an nodels appear to be nost "mature". The advantages
of Lagrangian nodels over other |ong-range transport nodels
(e.g., nunerical advection-dispersion nodels) are that they are
operational, readily available and relatively easy for the non-
specialist to understand and apply. Mdels for predicting short-

term and |ong-term average concentrations are both available
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In Lagrangi an nodel s, pollutant concentrations are charac-
terized with reference to Lagrangian coordinates. Changes in
concentration over time and space are described as if fromthe
perspective of the moving parcels of air rather than in relation-
ship to fixed x, y and z axes.

"The Lagrangian variable trajectory plume nodel repre-
sents a continuous plune emtted by a point source by the
transport and dispersion of a succession of discrete plune
elenents (air parcels or massless trajectory points). These
plume el enents are advected and diffused by a spatially and
temporally varying wind field. Each plune elenent carries
an independent tine history -- plunme chemstry, dry depos
tion and scavenging. The time-average ground-|evel nEact
of the continuous plunme at a given point is sinulated
combining the contributions from all elenments that |ndepen-
dently traverse that point during the specified averaging
time." (Bass, 1981).

Proponents claimthat the nodels are able to sinulate both
smal | scale diffusion and the large scale neander believed to be
largely responsible for long-range transport and dispersion
(Hanna, et al., 1982). However, there appears to be little
agreenent on how these processes can or should be incorporated
into the nodels (Bass, 1981).

A common form of Lagrangian di spersion nodels is the "Puff”
nodel in which the continuous plune is represented by a series of
puffs. The nodel assumes that: (1) puff diffusion is simlar to
pl ume diffusion; (2) at long ranges, plune dispersion may be
descri bed as sonme function of the Pasquill-Gfford dispersion
paraneters or as a function of tinme (e.qg., oy = 0.5t (sec),
(Heffter, 1980); (3) pollutants are confined to the m xing

| ayer.
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The meteorol ogical data required by the puff nodel are
simlar to those required by the Gaussian nodel, although they
are used differently. Wnd speed and direction data from surface
and radi osonde stations are used to generate w ndfields.

W ndfi el ds describe the spatial and tenporal variations in wnd
speed and direction and are used to predict the transport and

di spersion of the plune. \Wen neasured data are not avail able
for regions within the wndfield, data interpolated from adjacent
regions nust be used. Finally, the nodels require estinates of
m xi ng | ayer depths over the nodel region

As with Gaussian nodels, uncertainty in the Lagrangi an node
predictions are related to the ability of the nodel to mathenmati -
cally simulate conplex, real-world conditions and the availabili-
ty of reliable data. An inportant source of uncertainty in the
nodel s is that the paraneters used to describe diffusion and
di spersion are still quite crude; they are not well founded
theoretically or enpirically. They cannot account well for the
effect of wi ndshear resulting fromvertical variations in w nd
speed and direction. Dispersion paraneters are consequently
likely to underestimte dispersion. Mdel predictions are parti -
cularly sensitive to uncertainties in dispersion paraneters for
averaging periods |ess than 24 hours (Hanna, et al, 1982).

The inability of the nodels to describe vertical w nd speed
and direction shear may also result in significant error in
prediction of plune trajectory. Trajectory error is generally
greater under stable than in neutral or unstable conditions

(Bass, 1981).
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Upper air observations are critical for predicting plune
transport, yet the twice daily radi osonde observations from sta-
tions typically 300-500 km apart effectively limt the tenpora
and spatial resolution of the wndfield. Data extrapolated from
surface station observations or predicted from nunerical weather
prediction nodels have been used to supplenent upper air observa-
tions but the reliability of such data has not been fully tested.
Accurate description of wndfields is particularly troublesome in
conplex terrain and during "active weather conditions".

Information on the accuracy of |ong-range transport predic-
tions is extremely limted especially for short-term (3-24 hour
averages. The difficulty and expense of data collection has |ed
to a dearth of adequate tracer field nonitoring studies, neces-
sary for nodel verification. The ongoing Cross Appal achi an
Pol lution Transport Experinent (CAPTEX) is designed to provide
such data. Nunerical analysis of nodel sensitivity has conse-
quently been nore common, but according to Bass (1981), little of
the work in this area has been reported in the open literature.

The results of sonme field verification studies for |ong- and
short-term long-range transport nodels have been reported by
Bass (1981) and are shown in Table 5. In general, the perform
ance of long-range transport nodels is worse than that of
Gaussian nodels. Predictions are particularly poor for short-
term averages. For instance, experiments designed to predict
t hree-hour concentrations at ground-level in the Northern G eat
Plains -- an area that has been relatively well characterized in
plume transport studies -- found that predicted concentrations

frequently differed from observed concentrations by nore than a
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Table 5. Empirical Estimates of the Accuracy of
Long- Range Transport Model s

A, Short Term Mdel s:

Model / Condi tions Results Sour ce
Weekly averages of 50% wi t hin Heffter (1977)
Krypton-85 transport factor of 2
of 1000 km (H version
of nodel)

90% wi t hi n

factor of 10
B. Long Term Mbdel s: *

Correl ation

Model Coef ficient
Western European LTRAP s02 0.7-0.8 Mancuso
data base, EURVAP-1 (1979)
model so? 0.6-0.7
NADB and EPRI/SURB data s02 0. 7+ Meyer s,
bases for eastern U S. et al.
Lagrangi an Puff nodel so% 0.6-0.8 (1979)

with nore conpl ex
vertical diffusion

*Mont hl y- - Averaged - - G ound-| evel Concentrations

Source: Bass (1981).
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factor of two (Bass, 1981). Again, these results are derived
from studies of primary pollutants or inert tracers and it is

anticipated that errors would be greater for reactive pollutants.

GROUND- WATER MODEL S

G ound-water supplies drinking water for roughly half the
United States popul ation (Konikow, 1981). |ncreasing concerns
about the contam nation of this supply with toxic chem cals has
led to greater pressure on ground-water nodeling to provide
information for the prevention managenent, or cleanup of con-
tam nation problens. The long tinme franmes involved and the
expense of exploratory drilling and testing for physical char-
acterization of sites nmake nodel sinulation a theoretically
attractive management tool for both existing and proposed sites.

The need for ground-water nodeling for routine application
to field studies of contamnant mgration has generally out-
stripped the devel opnment of the necessary nodels and data to run
them (Anderson, 1979 and Koni kow, 1981). G ound-water nodeling,
like long-range transport nodeling for air pollutants, is stil
inrelatively early stages of development. There is no equiva-
| ent anong ground-water nodels of the Gaussian nodels that are
widely used in air pollution dispersion nodeling. |nstead, there
Is greater enphasis placed on nore conplex numerical advection
di spersion nodels for which there are still substantial theoreti-
cal and practical, (e.g., data requirements) linitations.

G ound-wat er nodeling shares with air pollution dispersion nodel-

ing limted capability to provide accurate results under conplex
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real-world conditions -- long distances, nultiple dinensions,
conpl ex geol ogi cal conditions, reactive contam nants, and multi-
ple sources. This limtation is particularly severe in the use
of nmodeling to predict novenent and concentration of plunes.

The EPA has begun in the last few years to evaluate existing
ground-wat er nodeling capabilities and to devel op guidelines for
the appropriate application of nodels to risk assessnent for
field situations (JRB, 1982). As yet, though, no coherent
framework for evaluating the use and performance of ground-water
nodel i ng seens to exist.

The follow ng sections seek to devel op an understandi ng of
the uncertainties in ground-water nodeling and their effect on
uncertainties in risk assessnents. The analysis begins with a
presentation of the theoretical bases and data requirenments for
ground-water nodels and is followed by a discussion of the
present application of nodels, the nmmjor sources of error and
estimates of the nagnitude of the error in nodel outputs.

An understandi ng of the basic structure and use of ground-
wat er nodels is hel pful for clarifying the sources of error in
model i ng contami nant transport. The followi ng introduction is a
brief overview of a conplex subject; readers interested in nore
conplete reviews should refer to valuable works by Anderson
(1979), Faust and Mercer (1980), Mercer and Faust (1980 a,b),
Pope- Reid (1982), Freeze and Cherry (1979) or Koni kow (1981).
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Two basic processes govern the transport of contamnants in
ground- wat er ;

1) advection: novenent of a solute attributable to the bulk
notion of flow ng ground-water the rate of which is
controlled by the average linear velocity of the water

2) hydr odynam ¢ di spersion: process in which the solute is
spread out in directions other than that dom nated by
ground-water flow and which results from nechanical m xing

in the soil and to a | esser extent from nol ecul ar diffusion.

Most nodel s devel oped to study contam nant transport in
ground-water consist of solutions to partial differentia
equations describing both advection and dispersion (Anderson
MP., 1979). In sone nodels, advection equations al one may be
used to describe solute transport.

The advection or flow equation for flowin a non-

homogeneous, anisotropicl nedium has the followi ng general form

ho.o —
(SXi (Tl] CS—X_j-) = SS 6_E + W 1,3 = 1,2,3 (10)

wher e

T = transmssivity (aquifer thicknesg multiplied by
hydraulic conductivity) ({(Length)“/Time)

h = head (Length)

S = specific storage (Length™1)
W = volunme flux per unit area

x = longitudinal distance (L)

y = transverse distance (L)

t

=tinme
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Hydraulic conductivity is a poorly understood property which
describes the ability of the geological medium to conduct fluid.
It is a function of both the porous nedium and the fluid
transmtted. The head is a neasure of the potential energy in
the ground-water system and is estimated by the height to which
water will rise in a open stand-pipe. The change in head over a
distance of hydraulic gradient ¢ 22. y is the driving force for
ground-water flow in the flow equatfon

The dispersion equation, also known as the mass transport

equation, estimates contam nation concentration changes in time

and space:
s§C _ & s&C | 8 .
5t - 8. [Dij Gx.] 5. (Cvy) + R i=1,2,3 (11)
i 3 i
wher e:

C = concentration of chemcal in the ground water (M/L3)
D= coefficient of hydrodynam c dispersion (12/T)
V = ground-water velocity (L/T)

R= rate of generationor renmoval of solute from
ground-water (M/L>T)

The coefficient of hydrodynam ¢ dispersion describes the
tendency of the nediumto spread out a contamnant in directions
other than those produced by the principle direction of ground-
water flow and is a function of the fluid velocity and the
dispersivity of the nedium Dispersivity is a property of the
medi um rel ating hydrodynam c dispersion to the velocity of
ground-water flow and like hydraulic conductivity is physically

poorly understood.
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G ound-water velocity is often determned using Darcy's Law.

K éh
Vit Tex; A (12)

wher e

V = ground-water velocity (L/T)
K

hydraulic conductivity (L/T)

n porosity (percent void space in total volume)

A = cross sectional area of the aquifer (L2)

In sum the data required to study contam nant transport

using the advection-di spension equations generally include (Pope-

Rei d,

1982) :

Boundary conditions: information on the geonetry of the

ground-water system initial head distributions, |ocation
and type of flow at the boundaries (inpervious, constant
flux, etc.).

Physical characteristics of the system hydraulic

conductivity, porosity, conpressibility.
Flow variables: Darcy (average) velocity in any coordinate
direction, coefficient of hydrodynam c di spersion

(advection-di spersion nodels only).

The difficulty of obtaining the necessary data poses the

greatest obstacle to the use of ground-water nodels for the study

of contam nant transport (Anderson, MP., 1979). No nati onal

dat a

bases conparable to those available for air pollution dis-

persion nodels exist for ground-water contam nant transport
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models.  Wiile there are published data available for some soil
properties, (e.g., porosity and hydraulic conductives), data nust
in general be obtained from each site.

The flow and di spersion equations may be sol ved anal ytically
or nurmerically. In analytical nodels, the equations are solved
exactly, but usually after they have been sinplified by assum ng
i deal i zed conditions, e.g., steady state conditions for ground-
water velocity and dispersion, and an aquifer of infinite extent.

Anal ytical solutions of the equations are also used to
verify the results of the approximation techniques used to solve
the equations in nunerical nodels.

Nuneri cal nodels enploy any of several techniques for
approximating the partial differential equations. The finite
di fference nmethod, nethod of characteristics, and finite el enent
are the nost coomon. In the finite difference method the con-
tinuous function is approximated by a series of l|inear difference
equations (Pope-Reid, 1982). The nethod of characteristics is
simlar but involves the additional step of expressing the par-
tial differential equations as their "characteristic" set of
ordinary differential equations which are then solved by finite
difference methods. In the finite elenent nethod the partia
differential equations are first transformed into integral form
in order to be solved. A fourth method for solving the disper-
sion equation is Mnte Carlo sinmulation (e.g., discrete parce
random wal k) in which dispersion is treated as a random rat her

than determnistic process (Pope-Reid, 1982).
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Function does not necessarily follow formin the case of
ground-water contam nant transport nodels. Unlike air pollution
di spersion modeling, in which the Gaussian model is particularly
suited to certain distance ranges and Lagrangian nodels to
others, it is difficult to judge which type or combination of
ground-water nodels mght be best suited for a specific applica-
tion. The nodel chosen depends on the nodel application, the
availability and quality of input data, the skill and experience
of the nmodeler, and the nature and accuracy of the nodel solution
desired. The apparent reason for this lack of generalization
about ground-water models lies in the fact that the nodels have
| argely been devel oped on a case by case basis for specific
applications. There have been few attenpts to evaluate the
validity of the nodels for general applications.

Anderson (1979) nmakes a broad distinction between the uses
of advection dispersion nodels and advection nodels. Advection-
di spersion nodels are nost appropriate for small or local scale
problens (a few neters) and should be used when detailed investi-
gation of the spread of the plume is desired. Nunerical tech-
niques are usually necessary to solve the dispersion equation

Advection nodels using analytical or nunerical solutions may
be used alone or in conjunction with water quality (surface
water) models for larger or regional scale problenms (100 m-- a
few kiloneters) to provide a first approximation of average
change in water quality or solute travel tines. They are nost
appropriate when the effects of dispersion may safely be ignored

(over large distances and rapid ground-water flow).
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Al'though this distinction is not rigid, there appears to be
a consensus that advection-dispersion nodels are nmore appropriate
than advection nodels for tracking toxic contam nant plunes
(Anderson, 1979; Koni kow, 1981: JRB, 1982; Mercer and Faust,
1980c). The preference for the nore conplex nodels appears to be
based on their nore "realistic" underpinnings. However, there
has been relatively little evidence presented to show that the
predictions of advection dispersion nodels are necessarily always
better than those of the sinpler nodels, particularly under
conplex field conditions.

CGorelick (1983) has recently reviewed several innovative
approaches by various authors to the use of nodeling for managing
ground-water quality. In these instances, ground-water and/or
surface-water nodels have been devel oped in conjunction wth
various optimzation techniques (e.g., linear and quadratic pro-
granmmng). Thus, theoretically, allowing inportant policy and
financial constraints to play a role in water resource and qual -
Ity managenent. The basic problem addressed by these hybrid
model s consisted of managing the joint use of an aquifer for
wast e disposal and drinking water while maintaining acceptable
water quality at supply wells. \Wile these nodels are very
promsing tools for water quality managenment, they are still in
relatively early stages of developnent. \While this discussion
il lumnates some of the possible applications for ground-water
qual ity managenment, it would be msleading to suggest that the
ready application of nodeling techniques will provide a practica
and realistic solution for managing contam nation problens.

There are several serious constraints on the application of
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ground-water nodeling to the water quality management which can
generate considerable uncertainty in nodel results. The con-
straints include the availability and quality of input data, in
the estimation of nodel paraneters in the ability of the nodel to
mat hematically represent conplex, non-idealized conditions, in
the basic stochastic nature of ground-water/solute transport, and
finally in the accuracy of the numerical approxinmations tech-

ni ques.

At the outset, many nodels which require numerical solutions
are subject to errors that arise from the approxination tech-
niques used to solve the advection dispersion equations. These
nunerical /mass bal ance errors are typically on the order of 10-
15% and generally consist of two types: (1) nunerical dispersion
in which the contamnation front predicted by the nmodel is nore
smeared or dispersed than predicted by exact analytical solutions
to the equations and (2) nurerical oscillation in which the
numerical solution overshoots and undershoots the values obtained
anal ytically (Anderson, 1979; Pope-Reid, 1982). The finite dif-
ference nethod is particularly prone to these errors, while the
finite element is less susceptible and the discrete parcel random
wal k nmethod effectively elimnates them

The data required to run the nodels present a far nore
serious problem

of th;vﬁeg?gdhﬁﬁs;%énﬁ;é?gﬁli%h%eggrg$ggzgh%¥ SPF ﬂgrfﬁ}ég

dimensions. In addition, we need to know the sorptive

characteristics of the nedia along all paths, and we need to
estimate the variable rates at which the solidified wastes
will enter the transporting fluids. Needed, in particular,
s information on the distribution and extent of mgjor
heterogeneities. The need for such data severely taxes both
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the available data base and the technology for generating

it. Mst of the requisite available data have such |arge

error limts that their usefulness in predictive nmodels is

limted." (Bredehoft, et al. in Anderson, 1979).

The velocity distribution and dispersivities necessary to solve
the advection and dispersion equations are particularly difficult
to obtain. According to Anderson (1979), "[t]o date, there are
no well-tested, standard techniques for acquiring these data.”
Velocity may be neasured directly using tracers but is nore
commonly determned indirectly using neasurements of heads,
hydraulic conductivity and Darcy's Law. The hydraulic con-
ductivities used are either spatially averaged val ues obtained
fromanalysis of field tests or are fitted paraneters determ ned
fromthe trial and error adjustnment (calibration) of hydraulic
conductivities until a flow nodel sinulates the head distribution
observed in the field.

The uncertainties in the velocity distribution and conse-
quently in the rate of contamnant transport derive directly from
the problems in describing the spatial variation in hydraulic
conductivity. Inhonogeneities in the porous nedium such as
"stringers" of nore permeable materials or pockets of |ess per-
meable material, play a critical role in contam nant transport
and dispersion. The difficulties in accurately representing
t hese inhomogeneities can therefore effectively limt the pre-

dictive capabilities of the nodels.
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Porosity, which is also required to conpute ground-water
velocities using Darcy's Law, further contributes to uncertainty
in contamnant transport nodeling. It can vary by several orders
of magnitude over small distances, thus reducing the validity of
average val ues neasured in the lab or field.

Measurement of dispersivity, which is used to estimate the
magni tude of contamnant transport attributable to hydrodynamc
dispersion, is also very difficult. The prinmary problem is that
the nmagnitude of the dispersivity measured depends highly on the
scale on which the neasurenments are nade (Anderson, 1979); Pope-
Reid, 1982). Dispersivity measured in small scale laboratory and
in larger scale field tests can yield values for the sanme medi um
that differ by several orders of nagnitude. For instance, values
obtained from laboratory tests typically range from 1672 to
1.0 centineters whereas field tests yield values in the range of
10-100 meters (Anderson, MP., 1979). A nmajor reason for the
disparity in the results appears to be that l|aboratory tests are
unable to account for the effects of |arge-scale inhonogeneities
in the aquifer. Dispersivities may also be determined in the
process of calibrating a nodel but again, as fitted parameters,
they may not accurately describe the actual geol ogical condi-
tions.

There are also practical limts to the amount of data that
can be collected to characterize a site. Not only is drilling

expensive, but the nunber of boreholes that would theoretically
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be necessary to characterize the spatial inhomgeneities that are
so often crucial for ground-water flow and contam nant transport
coul d change the geological properties of aquifer (Fiering,

Personal conmuni cation, 1983).
A successful application and calibration of nodel for a

given site depends heavily on the expertise and experience of the
nmodel er at estimating the mssing paraneters of the nodel -- the
gaps left by field measurements. The inportance of the nodel er
to "intelligent" nodel use makes what Anderson (1983) calls the
"institutionalized black boxing" of nodels so dangerous. The
tenptation for anyone to run conplex nodels w thout the necessary
training or understanding of the limtations of the results is
great and indeed encouraged by current regulatory interest in the
use of ground-water nodels.

As the discussion of data requirements shows ground-water
flow contam nant transport nodels are by necessity sinplified
representations of conplex hydrogeol ogical conditions and
processes. Faithful mathematical simulation of all processes
affecting contam nant transport would not necessarily assure
better results. However, additional assunmptions that are
commonly made to sinplify nore conplex existing conditions that
either poorly characterized or poorly understood contribute to
the errors in and unreliability of nodel outputs. However
because of burdensone data requirenents, one or two dimensiona
nmodel s are comonly used to represent three dimensional systens.
Wien three dinensional transport is inportant, such nodels are
likely, on average, to over-estimate concentrations at any given

node. Another major source of error in the theoretical basis for
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contam nant transport nodels lies in their inability to account
accurately for the conplex reactions that a chem cal undergoes
while in the soil. As in air pollution-dispersion nodels a
single reaction term may be incorporated to represent chemca
reactions, precipitation, absorption, desorption, ion exchange
vol atization, etc. The incorporation of these processes into
contam nant transport nodels has been effectively stymed by the
paucity of experimental l|aboratory or field studies on the nature
and rates of these reactions (Anderson, 1979).

The conmmon assunption that the chem cal species of interest
in a nmodeling situation is non-reactive (i.e. is not broken down
or adsorbed to the soil) is likely to be very conservative.
Anderson (1979) reported the results of a sensitivity analysis of
an advection nodel developed at Oregon State University and used
to predict the quantity and quality of |eachate produced by a
sanitary landfill. The analysis denonstrated the inportance of
bi odegradation and adsorption in determning the contamnation

det ect ed.

_ "Mderate degradation in the landfill renoved essen-
tially all of the contam nant, thereby producing virtually
contamnant-free |eachate. Mbderate degradation occurring
only in the soil below the landfill alnmost elimnated con-
tam nants from the ground-water discharge, while weak
degradation of the contamnant in the soil elimnated 86% of
the contamnant ...In contrast, the results were relatively
Insensitive to changes in ground-water velocity and water-
table fluctuations”.

Finally, ground-water nodels are in general determnistic
while the hydrogeol ogic and chemi cal processes they are devel oped

to represent are generally stochastic.
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How good, then is the output of current ground-water nodels
for use in risk assessment? In contrast to Gaussian dispersion
nmodel s, estimates of the magnitude of the errors associated with

contam nant transport nodels are not readily available. Data can
be found on nunerical errors and on the differences between

concentrations observed in the field and sinulated during node
calibration but there is a dearth of information on the nagnitude
of the errors that mght be expected when nodels are used under
"real world" conditions (few data, conplex geology, etc.) to
predi ct contam nant transport over extended time periods or dis-
tances. This paucity of data reflects the relatively recent
arrival of ground-water nodeling to the regulatory arena; and the
difficulties in running and testing the application of the nodels
has not been as routine or w despread as it has been for air

pol lution dispersion nodels. The systematic eval uation of
ground-water nodel s necessary to provide perspective on the
appropriate role of the nodels in risk assessment and in the
management of hazardous waste has not been done.

The nost common error estimates that appear in the litera-
ture describe the ability of the nodels to reproduce existing
conditions at a site (e.g., the existing contanination phases).
Under the "best" conditions (for instance, during the research
and devel opment of a nodel, wth adequate data) nodels can be
expected to reproduce existing conditions relatively well.

Table 6 presents the error estimates for several analytical and
nurmerical nodels that have been field tested (Pope-Reid, 1982).
The errors range from about 5 to 30 percent but unfortunately,

neither the source of the errors nor the outputs to which they
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apply are always indicated. They are believed to reflect both
numerical / mass-bal ance errors as well as differences between
sinul ated and observed val ues. 2

In nmost contam nant transport nodels, mass balance errors
alone are on the order of 10-15% (Anderson, 1979; Pope-Reid,
1982).  Koni kow and Bredehoft (1974) used a solute transport
model to study the effects of irrigation on the distribution of
dissolved solids in the ground-water of an alluvial aquifer in
Colorado. The finite difference method was used for the disper-
sion equation. Wwen the nodel was calibrated, it reproduced the
di ssolved solids concentration within 10% of the observed val ues
about 80% of the time (Anderson, 1979).

The nore interesting and nore perplexing question for risk
assessment concerns the accuracy of nodel predictions over tine
and space. Unfortunately, the error estimates given above for
nmodel s that have been calibrated for specific sites provide
limted insight into the ability of the nodel to predict the
movenent and concentration of ground-water contam nants. (One
woul d expect the agreement between observed and sinulated val ues
to be reasonably good when the nodel is calibrated. During
calibration, the parameters of a nodel are adjusted until the
model sinulates observed field conditions as well as possible.
The extension of the nodel to areas where contam nant plumes have
not been found and studied is a very different problem Here,
all the uncertainties created by the difficulty of characterizing
flow and contam nant transport chemcal interaction, deposition

and decay in conplex three-dimensional systems come into play.
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Even the calibration process may |lead future predictions astray
since the physical properties of the aquifer can becone fitted
paraneters whose relationship to actual field conditions is un-
certain; sone authors have expressed the concern that different
fitted values of hydraulic conductivity, for instance, can yield
the sane head distribution.

An additional problemis that, strictly speaking, predic-
tions should be made for periods of tine only as long as the
period of observation for the aquifer or site. In practice,
however, this advice is often not followed since historical data
on ground-water flow or contamnant levels is available for
relatively short periods of time and even then for few sites.

For proposed sites these data are especially rare. Since ground-
wat er contam nation problems nmay span decades, there is a strong
incentive to apply nodels to periods exceeding those for which
there i s adequate data.

To date, few authors have been willing to estimate the
likely accuracy of ground-water model predictions for "real-
worl d" applications. One nodeler pessimstically estimted that
under typical field conditions with few data, nodel predictions
could be off by as nuch as two or three orders of magnitude.? In
a recent editorial, Anderson (1983) argued restraint in the use
of ground-water nodels:

It is clear that nodels nust be used in conjunction with

field studies and in fact, field studies to help resolve the

questions about dispersion and chemcal reactions in the

Fesul 1o of ihese studves arg in, the prontioh of oroand:

water models for contamnant transport applications should
be viewed with extreme caution
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The tine when ground-water nodeling can be used routinely
for ground-water contamnation problens, even by qualified

model ers, is still a good way off.

Concentration, Exposure and Dose

Environmental fate and transport nodels yield spatial and
tenporal fields of anbient concentration estinmates. But hazard
assessment typically requires as an input sone estimate of either
exposure or dose. Exposure analysis involves consideration of
human activity patterns and dietary habits in conjunction wth
the estimation of anbient concentrations. Dose estimation goes
one step further -- taking into account human netabolism

Dose is a conplex function of absorption, netabolism and
excretion rates, which thenselves are influenced by age, sex,
stature and activity level. Although the details of absorption
met abol i sm and excretion are known for certain chemcals, for
most, it is inpossible to carry out a full analysis. Therefore,
for risk assessnment, a sinplified estimate based solely on the
concentration in air or water and volumetric rate of intake
(liters of air breathed/day, liters water/day) is commonly made.
Al of the chemcal inhaled or ingested is assumed to be
absorbed. For carcinogenic risk assessment, dose rate is usually
expressed in the form conpatible with EPA carcinogenic potency
estimates derived from animal bioassays involving uniform life-

time exposure -- ng/kg bodywei ght/day or mg/m? surface arealday.
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The EPA has adopted the International Comm ssion on
Radi ol ogi cal Protection (IRCP) "reference man" as a basis for
converting exposure to dose rate (Federal Register, November 28,

1983: Norman, Charles; EPA Exposure Assessment Goup, July 1983).
The "reference man", a conposite of individuals in various coun-

tries and time periods, basically represents a Caucasian male

20-30 years of age, of \Western European or North American origins

(ICRP), 1981). Table 7 presents the physical characteristics and

estimates of daily air and fluid intake for the reference nan.
The dose rate estimate, d (ng/kg per day), for the

"reference man" woul d then be:
d =0.33 ¢, +0.028 c, (13)

wher e Ca(mg/m3) Is the concentration of the contamnant in air
and C,(mg/L) is its concentration in water. This dose rate
estimate is obviously appropriate for estimating the risk faced
by a hypothetical "reference man" exposed to identical airborne
concentrations in all mcroenvironments and deriving his entire
fluid intake from equally contam nated sources. Severa
conceptual generalizations would seem necessary to make this dose
rate estimate useful for risk assessnent.

First, it is likely that the risk faced by a biologically-
average person is of nore interest than the risk faced by the
|CRP "reference man". Therefore, in principle, the netabolic
coefficients 0.33 and 0.028 should be adjusted to reflect a
wei ghted average of the values appropriate for various deno-
graphic (age - sex - and racial) groups. In practice, such an

adj ustment is not conmonly made and is not believed to be inpor-
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Table 7. '\F/’stiol ogi cal Paraneters for ICRP Standard Reference
n

Hei ght 170 cm
Body Wi ght 70 kg
Total Fluid Intake 1.95 L/ day
Tap Water 0.15 L. day
Vol ume of Air Breathed/ day

8 hr. working "light" act|V|t}/ 9.6 m3

8 hr. non- occupatlonal activity 9.6 m3

8§ hr. resting 3.6 93

Tot al 23 m>/day

% total air breathed at work 42

Source:  International Comm ssion on Radiol ogical Protection,

1981. Report of the Task Goup on Reference Mn. Publ’i cati on
No. 23. Perganon Press, New York, New York, 480 pp.
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tant since any bias introduced by use of doses appropriate for a
"reference man" is thought to be very snmall in conparison wth
the uncertainty typical in estimtes of risk.

Concerns that the 70 kg nale may not adequately represent
nmore susceptible or sensitive individuals in the population has
led to the use of the 10 kg child in some risk assessments.
Children have a higher air and fluid intake on a body weight
basis than adults (Severn, 1983). However, this is relevant only
iIf one is interested in the distribution of risk anong the popu-
lation, or if potencies are strongly dependent upon age at expo-
sure, as is believed to be the case for at |east one carcinogen,

i oni zi ng radiation.” For nost carcinogens, data on potency as a
function of age at exposure are unavail abl e.

To estimate the distribution of risks for various age-groups
in the population, it is also necessary to rely on a nodel of the
dynam cs of risk. Two such nodels have been advanced in the area
of radiation carcinogenesis. The absolute risk nmodel assunes
that after a latency period, 1 (yr), thought to be about 2 years
for leukema or bone cancer and 10 years for most solid tunors,
incremental annual risks are constant throughout a plateau, or
expression-period, p (yr). The plateau period is now thought to
be 25 years for |eukem a and bone cancer and the remai nder of
lifetime for nost solid tunors. The relative risk nodel assunes
that after the latency period incremental annual risks increase
roughly in proportion to baseline cancer risks.

These nodels provide a basis for projecting cancer risks in

future time periods and also for estimating the contributions of
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doses received in past tinme periods to current cancer risks.

They give an indication of the appropriate averaging-tine for
cancer dosinetry. If the nodels are correct, and applicable to
ot her carcinogens, then the appropriate averaging tines are
roughly 25 years for |eukema and bone cancers and about 55 years
for nost solid tumors.®

Simlarly, the assunption that 100% of the contam nant
I nhal ed or ingested is absorbed and reaches the target tissues
woul d seem quite crude. Absorbtion, netabolism and excretion
strongly influence the dose actually reaching the target tissue.
Al'though there is a compelling need for the incorporation of
these rates into quantitative risk assessnent, the necessary
supporting data are lacking for nost chemcals. Since 100%
absorption does not occur for all chemcals and because metabo-
lismand excretion of a substance is likely to decrease the doses
actually reaching the target tissue, the use of 100% absorption
assunption usually overestinmates the dose.

It mght seemthat this would lead to overestimtion of
risk. But, this is not always the case. What is inportant is
the correspondence between the dosinetry used in the derivation
of potency estimates and the dosinetry used in risk assessnent.
| f potency has been estimated from anal ysis of past human expo-
sures, no bhias will result if simlar measures of dose or expo-
sure were used in both conponents of the analysis. If, on the
other hand, potency has been estimated from analysis of animal

data, the accuracy of the animal analogy becones inportant. As
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long as the relationships between anount of contam nant inhaled
or ingested and dose to target tissues are simlar for man and
the test species, no bias wll result.

Recently, a great deal of attention has been devoted to
indoor air pollution. It has been estimated that the average

person in the U S. spends nore than 75% of the time indoors.
Again, it would seem that dose estimtes based upon outdoor
concentrations of toxic pollutants mght yield biased risk esti-
mates. However, the existence and extent of bias depends entire-
'y upon the relationship between outdoor and indoor concentra-
tions. For many pollutants the only difference in indoor and

out door concentrations is due to the capacitance effect of struc-
tures. For these pollutants, although pul ses may be danped and
there may be lags in the tine patterns of exposure, long-term

I ndoor averages are virtually identical to |ong-term outdoor
averages. Al though under non-linear does response curves wth
short biol ogical averaging tinmes this could lead to bias, in nost
circunstances it would not. For other pollutants, deposition on
surfaces and/or reaction with structural nmaterials and furnish-
ings may lead to depletion of contamnants. For these, indoor
concentrations mght be substantially less than those outdoors

causing risk estimates based upon outdoor exposures to be biased

upwar ds.

628



I1l.  HAZARD ASSESSMENT

Potency Estination

The final step in risk assessnment is to apply estimates of,
the potency of a given substance in humans. The nethods for
estimating which differ depending on the source of data and
on the formof toxicity, are discussed briefly below.

Epi dem ol ogi ¢ studies and animal bioassays are the two pri-
mary sources of potency estimtes. Because they elimnate the
need to extrapolate results from animals to humans, epidem ol ogic
studies are preferable to animal studies. However, there are
relatively few conpounds for which valid epidemologic data
exist. Less than thirty of the 70,000 chemcals in commercia
use in the U S have been definitely associated with cancer in
humans (Tomatis, 1978 in NRC, 1983). The hunman data for other
toxic effects, such as teratogenicity and neurotoxicity are even
more limted

Wien epidemologic data are available they nust be used
cautiously. Many epidemologic studies require retrospective
analysis of the health effects of occupational exposures to toxic
conpounds. In these studies the conparability between workers
and the general population is a source of uncertainty.

In occupational epidemology, a critical issue is selection
of an appropriate control group. In addition, the conparability
of exposures of workers and nenbers of the public is at issue. A

wor ki ng population is generally exposed to nuch higher concentra-
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tions than the general population albeit for 8 hours a day and
for less than lifetime. Retrospective epidemologic studies
typically have little data on the nature and |evel of historica
exposure of the study populations and nust therefore devel op
associ ations on the basis of current exposure mneasurenents. For
diseases with long latency periods, |ike cancer, current expo-
sures may be poor surrogates for the relevant neasures of dose,
especially if exposures have changed appreciably over the years.
In general, the use of inprecise neasures of exposure tends to
bias risk estimates towards zero. Prospective studies (studies
which nmeasure current exposures and monitor incidence of disease
forward in time) elimnate this problem but are expensive, time
consuming and as a result are far |ess common.

Inherent limtations of epidemologic studies further
restrict their usefulness in risk assessment. Difficulties in
obtaining and following up a large enough study population to be
able to detect an effect, in defining exposed and unexposed
popul ations, in describing the nature and |evels of exposures
over the study period and in controlling for exposures to con-
founding factors -- factors which are associated with both the
exposure and the disease (e.g. snoking) generate considerable
uncertainty in the existence and the strength of an effect
detected (Winstein, 1979). Rarely can the nmagnitude of that
uncertainty be estimated. In addition, the long |atency periods

bet ween exposures and the appearance of statistically detectable
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effects and the time and expense involved in |arge epidemologic
studies make it unpractical for nmpst decisions requiring risk
assessment to await the outcone of epidemologic studies
(Weinstein, 1979).

Toxicity testing in animals is far more common than epi-
dem ol ogi ¢ studies. Approximately 7000 substances have been
investigated in animal bioassays, of these, 1500 are reported to
be carcinogenic (Mugh, 1978 in NRC 1983). However, there are
several sources of uncertainty in the use of animal data as a
basis for human potency estimates. First, the doses adm nistered
to the animals are typically nuch higher than those encountered
in the environnent. Therefore, nodels nmust be relied upon to
provide estimates of aninmal potency at |ow dose rates. Second
the effects in genetically homgeneous popul ations must then be
extrapolated to a heterogeneous human population. Furthernore
al though the National Cancer Institute has devel oped standardized
designs for carcinogenesis bioassays, problens in design and
execution of the studies can greatly affect confidence in the
observed results.

Two critical steps in the devel opnent of potency estimates
are |low dose extrapolation and, for aninal data, interspecies

conmparison or scale up of results.

Low Dose Extrapolation

Bot h epi dem ol ogi cal and aninmal studies typically involve
health effects of exposure to concentrations that are typically a
few orders of nmagnitude greater than those encountered in the

general environnent. In order to estimte the risks of long-term
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exposures to |low concentrations, it has been necessary to devel op
methods for extrapolating from the existing experinental data.

Several mathematical nodels have been devel oped for this
purpose. Al of the nodels widely used in regulatory applica-
tions are non-threshold nodels -- nodels for which there is no
dose bel ow which the risk is assumed to be zero (Anderson, 1983).
The choice of this class of nodels has been based on prevailing
theories of carcinogenesis and on current practical obstacles to
identifying thresholds for carcinogens. A widely held belief is
that nost forns of carcinogenesis involve interaction with, and
irreversible damage to DNA, a process for which there is theo-
retically no threshold dose. Even if thresholds exist, it is not
currently feasible to design experiments capable of detecting
them

One of the earliest procedures for |ow dose extrapolation
was devel oped by Mantel-Bryan in 1961 (Hogan and Hoel, 1982).
The Mantel -Bryan nethod is based on the assunption that the
rel ationship between the logarithm of dose and the probability of
response is approxi mately described by the cumulative nornal
distribution. The Mantel-Bryan estimate of an upper bound on
risk at low doses is found by extrapolating along a line of slope
one? from an upper confidence linmit (99% on the proportion of
aninal s observed with tunors at a given exposure level to the
dose level of interest. The Mantel-Bryan procedure is no |onger
commonly used because it often does not fit the data well in the
experimental dose range, is not well supported by any biologica

theory of carcinogenesis, and (although it is inherently
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conservative) often gives |ess conservative results than nore
recently devel oped nodels. (Hogan and Hoel, 1982).

More common are the so called "hit" models which assune that
carcinogenesis involves a finite nunber of interactions or "hits"
of the substance with the target tissue before an identifiable
tunor develops. The nost basic of the hit nodels and one which
has been used in risk assessnment by EPA is the one-hit nodel
The nodel, which assunmes that only one dose related stage is

necessary to induce cancer, has the follow ng mathematical form
P(d) =1- exp (-84) (14)

where P(d) is the projected risk at dose level, d,; 8is the
unknown nodel paraneter and d the expected number of hits. In
the |ow dose region this becones P(d) ~ 8d, a sinple |inear
nodel.  The one-hit nodel is not considered to be as flexible as
the other linear non-threshold nodels to be discussed. Because
it only has one paraneter, g, it often is not able to fit the
experinental data well; particularly if the data have strong
upward curvature. (Crunp and Howe, 1980).

The gamma multi-hit nodel, developed by Cornfield and
Van Ryzin, assunmes that the initiation of cancer requires a
series of k hits and incorporates spontaneous cancer incidence

using what is known as Abbot's Correction Factor (Hogan and Hoel
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1982). The nost general form of the nodel, in which k can assune

non-integer values, is:

d
P(d) = &5t texp(-8t)at/r (k) (15)
]

where g and k are nodel paraneters and I(k) is the gamm
function.  Cooper (1983) has derived a form of the nodel

appropriate for integral numbers of hits:

P(d) =1 - exp(pd) 1 + d + %! (Ba)2 + ... + —%T— (8a) (16)

where 8 and k are nodel paraneters. The parameters in this
version of the nodel are readily interpretable; ga is the
expected nunber of hits froma dose d, and k is the number of
hits required to initiate a tumor. Wiile the gamma multi-hit
model is nore flexible for fitting experinental data, persistent
doubts about the nodel have precluded its w despread acceptance
(Hogan and Hoel, 1982).

The Weibull nodel has the follow ng form
P(d) =1 - exp(-3d™) (17)

where g and m are nodel parameters (FSC, 1980). The nodel is
| inear when n¥l, concave when m<1 and convex when m>1. To date
the Weibull has not found w despread use in risk assessnent for
environnental cancer

The last of the nodels to be discussed is the one that is

primarily used by the EPA for risk assessnent (Anderson 1983).
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The multistage nodel, devel oped by Armtage and Doll (1961) and
later nodified by Crunp (1980), assumes that carcinogenesis
occurs as a series of stages or events. Each event or stage is
assuned to be independent and additive and their rate of

occurrence is linearly related to dose:

— o« s o k
P(d) = 1 - {-(8,d+8,d + - +p,d")} (18)

where k is the unknown number of stages. At |ow doses the nodel
can be approximted by P(d), = gd, a sinple linear nodel. The
upper 95% confidence [imt on g comonly is used to develop an
upper bound estimate of potency. Use of the multistage nodel has
been defended on the basis of the nodel's biological plausibility
and flexibility in fitting data in the experimental dose ranges.
Critics, however, have questioned the relevance of the nodel for
carcinogens for which interaction with DNA does not appear to be
a critical step -- a problemwth all of the "hit" nodels (Hogan
and Hoel, 1982).

Gven current understanding of process carcinogenesis, there
Is no scientific basis for determ ning which nodel is nost
appropriate for |ow dose extrapolation. The nodels in nost cases
fit the data in the experimental dose ranges equally well. The
problemis that at |ow doses the estimate of risk is strongly
dependent upon the choice of nodel.

Figures 1 and 2 illustrate the wide variation that exists
anong risk estimates given by various nodels at |ow doses. At
doses in the experinental range the nodels give simlar estinates

of risks. However, the variability anmong estimates of risk
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increases dramatically with decreasing dose. At risk levels of
significance for regulatory purposes (10~3 - 1076 |ifetinme risks)
the associated dose levels may vary by several orders of
magni t ude.

One point concerning |ow dose extrapolation must be appre-
ciated. The attributable risk due to exposure is well known at
two points: zero dose and in the range of experinental doses.

Intuitively it is obvious that in _an absolute sense the uncer-

tainty surrounding an estimate of risk becones quite small as the
dose approaches zero. The absolute uncertainty about risk is
also small in the center of the range of experimental doses.
Quite the opposite is true if ratios of potency estinates are
conpared. As the dose approaches zero, an approxinate upper
bound on potency is given by 8, the slope of the one hit nodel
However the |ower bound on |ow dose potency near zero dose i$S
zero. And the ratio of these potency estimates is infinite.

Choi ce of nodel is obviously a crucial issue in cancer risk
assessment. Since there is no clear scientific basis for node
selection some have suggested that central estimtes of risk
shoul d be based upon a weighted average of the risks given by

several plausible nodels:
P(d) = wiPy(d) + waPp(d) + ... + wpPp(d) (19)

where Py(d) is the estimate of risk given by nodel 1, w; is the
probability that nmodel 1 is correct, and so forth. The weights
of course would be subjective probability estimates. Harrison

(1983) has noted that because the one-hit nodel typically gives

risk estimates orders of magnitude above those given by the
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mul ti-stage, Weibull and nulti-hit nodels, the central risk

estimte would reduce to:

P(d) =~ wPy (d) (20)

The practical difficulty in this approach lies in determ na-
tion of the set of plausible mdels and the vector of subjective
wei ghts, wy, wo, ..., wp. Decision analytic approaches would be
required to estimate the weights (see, for exanple, Morgan
Henrion, and Morris (1981). The results would be sensitive to
the conposition of the group of experts chosen. And, therefore,
the results mght be difficult to defend as a basis for public
policy. However if a central estimate of risk is required, there
IS no better alternative.

Recognizing the difficulty in determning the weights,

Wir Wo, «..s Wy, the EPA has taken the strategy of giving
approxi mate bounds on potency, rather than a central estimte of
potency and an estimate of the uncertainty in the potency esti-
mate.  The approxi mate bounds are zero and a 95% confidence

interval estimate of ; from (6), the multi-stage nodel.

| nterspecies Extrapolation

One of the nost uncertain steps in risk assessnent involves
inference of human potency, g, from estimates of potency derived
fromanimal data. As we noted in an earlier paper (Evans et al.
1982):

"The nost conmon assunption to make, but one that is none-

the less difficult to use, is to assune that one species is

like another. In Figures 3 and 4 we illustrate the problens
with this assunption.  Figure 3 is arat; Figure 4 is a man,
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they do not |ook alike and we nust be tolerant of the often
expressed doubts by intelligent nenbers of the public and
explain ourselves well. Inusing arat to tell us about
men, we do not inply that a rat is an embryonic man (about
to turn into a prince by a magic wand) nor that a man is an
overgromn rat, but to use the known fact that some of the
met abol i ¢ processes and cell structure are the same. Uti-
mately, however, the use of such an anal ogy must rest on

?ata on other chemcals, acconpanied by careful interpreta-

ion...

The species nmost commonly used in cancer bioassays are rats
and mce. As Table 8 indicates, there are many differences
between rats, mce and nen. Mst estimtes of human potency from
ani mal potency have been based upon the assunption of equa
sensitivity of both species. And the issue has been cast in
ternms of selecting the appropriate nmeasure of dose. As Table 9
i ndicates, the estimtes of human potency derived in this way are
strongly dependent upon the measure of equivalent dose which is
used to make the conparison. For exanple, estimates of human
potency derived from studies of mce would be approximtely 40
tinmes lower if based on ng/(kg-day) than if based upon ny/kg.
Simlarly, human potency estimates from nice based on mg/(m2-day)
woul d be about 3.5 tines |ower than those based upon nmg/kg and
11.5 tines higher than those based upon ng/(kg-day). Concerning
this dilemm, Hogan and Hoel (1982) note:

"In order to realistically choose anmobng these conpeting

dosage scales, it is necessary to conpare actual human

cancer risks derived from epidemologic studies with the
various aninal-based estimates that would be produced wth
the different dosage scales under consideration. Unfortu-
nately, very little data are available for making these
types of comparisons.”

Several attenpts have been made to conpare ani mal -based
estimates of potency with those from epidemology. A 1975

National Acadeny of Science (NAS) study of the health hazards of
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Table 8. Body Weights, Life Expectancies and Ranges of |ntake

of Air, ter and Food for Rats, Mce and Men
Mouse Rat Man
Vi ght  (kg) 0. 025 0.25 70
Lifelength (yr) 1.75 2.0 70
Air Intake (n8/day) 0.04 0.2 15
Water Consunption (L/day) 0. 005 0.015 2.5
Food Consunption (kg/day) 0. 005 0.015 1.5
Surface Area (nR) 0.0075  0.0357 1.8
Source:  Crouch and Wl son 51979)
Friedrich et al. (1966)

Table 9. Ratios of Lifetine Dose (ng) Required to Produce
a Unit Dose in Rat or Man to Lifetime Dose Required
to Produce a Unit Dose in a Muse

Measure of Dose

or Dose Rate Man Rat Mouse
ny/ kg 2.8 x 103 10.0
ng/ (kg- day) 1.1 x 105 11.0
ng/ (nR-day) 9.6 x 103 5.4
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pesticides conpared animal-based and human estinates of potency
for benzidine, chlornaphazine cigarette snoke, aflatoxin By, DES
and vinyl chloride. Using the ng/kg measure of dose equival ence
the animal and human potency estinmates were within a factor of
ten of each other, with the exception of those for DES and vinyl
chloride. The epidemologic estimates of risks for viny

chloride were a factor of 500 |ower than those predicted on the
basis of animal data. A reanalysis of these data by Hoel indi-
cated that when either the ng/(kg-day) or mg/(m2-day) nmeasures of
dose were used aninal-based and epidem ologic estimtes of human
potency tended to agree within a factor of ten (Hogan and Hoel
1982) .

Figures 5 through 8 from Crouch and Wlson (1979) illustrate
the results of an analysis which extends the NAS data set to
include nine additional chenicals (acrylonitride, arsenic,
benzene, chloroform 3-3'-dichlorobenzidine, ethylenedibrom de,
| ead acetate, saccharin and radiation. The figures, which are
based upon ng/(kg-day), illustrate clearly the approximte nature
of current nodels for interspecies extrapolation. Note that the
best-fit lines of unit slope (dashed Iines on Figures 5 and 6)
indicate constant relative potencies between Osborne-Mndel and
Fischer rats and those in B6C3F1 mce of 0.40 and 4.5 respective-
ly. In general, the estimates of potency in rats based upon
potency in mce appear to be within a factor of ten of the

measured potencies in rats. The correlation between potency in
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humans and mice is not as good. |In nore recent work, Crouch and
W lson (1981) have suggested that it is appropriate to use unity
as a central estimate of k,, (wWth dose expressed as ng/(kg-
day)), and that an approximate estimate of ., is 1.25.

DuMouchel and Harris (1983) have published an article
describing an enpirical Bayes' nethod for conbining evidence from
tests in several species. The new approach may eventually |ead
to nmore precise estimates of human potency. In an illustrative
exanple, Harris and DuMuchel indicated that 95% confidence
intervals for potency of diesel emssions could be reduced to a
factor of approximately 9, i.e. ;, 1.1. However, at present
It would seem that interspecies extrapolation is one of the

weakest links in the risk assessment process.

Di scussi on

Attenpts to assess quantitatively the risks to human health
from chem cal contam nation resulting in exposures at |ow dose
rats are fraught with uncertainty. The anount of uncertainty
depends upon the contam nant, the pathways, the expected doses
and dose rates, and the nature and extent of toxicological/epide-
m ol ogi cal evidence.

Transport and dispersion nodels for non-reactive pollutants
are better developed than those for pollutants which are
chemcally reactive or which are lost in transport due to
deposition or absorption. Ar pollution nodels are, in general,
much better devel oped than ground-water nodels. Thus, estimates
of the concentrations of conservative pollutants in ambient air

are likely to be nore precise than either estimates of the
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concentrations of reactive pollutants in air or estimtes of the
concentrations of pollutants transported by ground-water

Because interspecies extrapolation introduces uncertainty,
risk estimtes based on potency estimtes derived from human data
should, in principle, be nore precise than those based upon
potency estimates derived from animal data. However there are
only about thirty contam nants for which human data exist. And
the estimtes of human exposures in these retrospective epide-

m ol ogi cal studies are often so poor that the theoretical advan-
tage in precision may be offset.

When expected doses and dose rates are orders of magnitude
bel ow those which were observed in epidem ol ogy and/or bioassay,
| arge uncertainties in estimates of |ow dose potency are intro-
duced. The magnitude of these uncertainties increases dramati-
cally as the differences between the expected environnenta
concentrations and the concentrations observed in epidem o-
| ogy/ bi oassay i ncreases.

The uncertainties in assessnment of human health risks woul d
not present a severe problem for policy analysis if their nagni-
tudes could be estimated well. Techniques such as statistica
decision analysis are well suited for policy analysis under
uncertainty. And, if the nagnitudes of the uncertainties in the
components of risk could be estimted, nethods for analysis of
propagation of uncertainty could be used to derive estinmates of
the overall uncertainty.

However, as our investigation demonstrates, estinmates of the

uncertainties in many of the conponents are not wdely available.
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There are sone estimates of the accuracy of air pollution trans-
port nodels. And there are a few estimates of the precision of
predictions of ground-water nodels. Data on about twenty chem -
cals provide rough estimates of the uncertainty introduced by

I nterspeci es potency extrapolation

But there are many problems with these uncertainty esti-
mates. They, in many cases, are not applicable to the situations
of interest. For exanple, they may apply only to prediction of
the transport of conservative pollutants. O they may apply only
to predictions of concentrations very close to the em ssions
source. And, in the case of interspecies extrapolation, they may
not adequately reflect the variability of uncertainty and its
dependence upon the specific contamnant, pathway, and test
speci es invol ved.

Finally, the uncertainty introduced in |low dose extrapola-
tion is, at best, difficult to quantify. And it is virtually
impossible to verify. The relationship between |ow dose potency
and the potency observed at high dose is dependent upon the
choice of dose-response nodel. And this choice is subjective.

No data or theory exist which unambiguously support the choice of
a particular model.

Therefore, it would seemthat in nost cases overall uncer-
tainties in risk assessment would be dom nated by the uncertainty
in determnation of |ow dose potency estimates and that, at
present, it would be quite difficult to generate defensible
estimates of the overall uncertainties due to the difficulty in

estimating the uncertainty in determnation of |ow dose potency.
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NOTES

Variable aquifer material and hydraulic properties as a
function of horizontal and vertical distance.

Personal conunication. WIIliam Rohrer, Senior Environmenta
Scientist, Pope-Reid Associates, Inc., St. Paul, Mnnesota,
Jul'y 1983.

| bi d.

See, for example, BEIR I (1972) and BEIR Il (1980) reports
of the National Acadeny of Sciences.

The average renmaining length of life under the 1970 U S.

Life Table and age structure of the 1970 Census is about

%8 years. Life expectancy at birth is approximtely
years.

That is, for each tenfold reduction in dose, the probability
of response is decreased by one standard normal deviate.
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PART 10

THE VALUE OF | MPROVED EXPOSURE | NFORVATI ON
I N BENEFI T- COST ANALYSI S OF TOXI C SUBSTANCES

John Evans

. | NTRODUCTI ON

Deci sions about the control of toxics and hazardous wastes
often nust be made amidst great uncertainty. |n many cases
rel ationshi ps between em ssions and exposures, exposures and
doses, and doses and health risks are poorly understood. In
addition there are conplex issues surrounding the valuation of
risks to human health. The resulting uncertainty conplicates
decision nmaking. One issue which often arises is how to deter-
mne when it is appropriate to collect additional information

Intuition suggests that a decision maker should collect
additional information only if the value of the information is
greater than the cost of obtaining it. Unfortunately this prin-
cipal is often ignored.

Statistical decision analysis provides a framework for
deci sion maki ng under uncertainty and a method for estimating the
val ue of information. (See, for exanple, Raiffa, 1968.) Thi s
paper illustrates how this nmethod can be used to estimte the

val ue of inproved estinates of exposure.
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1. ANALYTI CAL FRAMEWORK

Implicit in any framework for decision making under uncer-
tainty is the notion that even the best decisions may have bad
outcones. Additional information may be val uabl e because it nmay
reduce the likelihood of bad outcones. Its value depends upon
both the incremental costs of these bad outcones and the reduc-
tion in the probability of their occurrence.

An exanple may clarify this point. Table 1 gives the con-
trol costs and health risks associated with three strategies for
the control of toxic emssions from a hypothetical industria
source. Under the assunption that each unit health risk corres-
ponds to a one unit social cost total costs are mininized by
sel ection of control strategy B.

This problemdid not involve uncertainty and the decision
was sinple to nake. In contrast, consider the situation in which
this same decision nust be made on the basis of inperfect infor-
mation concerning health risks. See Table 2.

Here R is an unbiased, but inprecise, estimte of the true
health risk. (Ris normal ly distributed with mean 1 and standard
deviation s.) Figure 1 shows the total cost estimate for each
strategy as a function of the health risk estimate. Analysis of
the figure indicates that estinated total costs are mnimzed
under the following decision rules. If Ris less than 0.50
sel ect strategy A If it is between 0.50 and 1.40 select stra-

tegy B. OQtherw se select strategy C

655



Table 1. Hypothetical Control Costs and Health Risks
w thout Uncertainty
Strat egy Control Cost Health Ri sk Total Cost
A 0 1.00 1.00
0.25 0.50 0.75
C 0.81 0.10 0.91
Table 2. Hypothetical Control Costs and Health Risks
wth Uncertainty
Heal th Ri sk Total Cost
Strat egy Control Cost Esti mate Esti mate
0 1.00 R 1.00 R
B 0.25 0.50 R 0.25 + 0.50 R
C 0.81 0.10 R 0.81 + 0.10 R
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Total Cost Estimatc

3.0

2.0

1.0

0 1.0 2.0 3.
Health Risk Estimate, R

Figure 1. Dependence of Costs on Health Ri sks
-- Hypothetical Case
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If the true health risk were known, strategy B would be
selected. Uncertainty in the estimates of health risks leads to
random and sonetines incorrect, decisions. The cost of this
randommess may be determ ned by conparing the expected total cost
of decisions made under uncertainty with the cost of decisions

made under uncertainty woul d be:
E[TC] = P{R<0.50}1.00 + P{0.50<R<1.40}0.75 + P{R>1.40}0.91 (1

The conponents of this equation are the probabilities and
costs of choosing strategies A, B and C, respectively. Wth
perfect information, strategy B would al ways be chosen, with a
cost of 0.75. The difference between the expected total cost

under uncertainty and the cost with perfect information is:
EOL = P {R < 0.50} 0.25 + P {R > 1.40} 0.16 (2)

This quantity is known by decision analysts as the expected
opportunity loss, EQ., or expected value of perfect information
EVPI. It is the nost that a rational decision nmaker should be
wlling to pay to elimnate uncertainty.

The expected opportunity |oss depends upon both the incre-
mental costs associated with bad decisions and the probabilities
of making bad decisions. These probabilities depend upon the
amount of uncertainty in the health risk estimates. Figure 2
illustrates the dependence of the expected opportunity |oss upon
the degree of inprecision in health risk estinmates. Notice the
sensitivity of the expected opportunity loss to the standard

deviation of the risk estinates.
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Expected Opportunity Loss

0 0.1 0.2 0.3
Uncertainty in R sk Estimates, SR

Figure 2. Dependence of Expected Opportunity Loss on
Uncertainty in R sk Estimates -- Hypothetical
Case
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The example illustrates how uncertainty leads to incorrect
decisions and to increased total costs. It also denmonstrates
that with information about the degree of uncertainty and the
costs of incorrect decision nmaking it is possible to estimate the
expected value of perfect information

In nore realistic cases, it will be possible to reduce, but
not elimnate, uncertainty. A nore appropriate measure of the
value of information in these cases is the difference between the
expected opportunity loss without the information and the expec-
ted opportunity loss with the information. In the sections which
foll ow we devel op an approach for addressing this nore conplex

case and denonstrate the application of our approach
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II'l.  PROPCSED APPROACH

Qur approach for estinmating the value of inproved exposure
estimates in support of environmental decision neking involves
five steps.

(1) Estimate the uncertainty in health risk estimtes made on
the basis of current exposure estinates.

(2) Calculate the expected opportunity |oss associated with
deci sions made under the current |evel of uncertainty.

(3) Estimate the uncertainty in health risk estimates which
woul d remain once exposure estimates were inproved.

(4) Calculate the expected opportunity |oss associated with
deci sions made under the reduced |evel of uncertainty.

(55 Estimate the value of inproving exposure estimates by

comparing (2) and (4).

To apply this framework to the problem of decision naking
for toxic air em ssions one nust consider the sources of uncer-
tainty in health risk estimates. Five steps are involved in the
estimation of health risks under alternative control strategies.
One must estinate:

(1) the em ssions expected under each control strategy,

() the contribution of em ssions to anbient concentrations,

(3) the contribution of changes in anbient concentrations to
changes in human exposures,

(4 the contribution of changes in exposures to changes in
doses, and

(5 the contribution of changes in dose to changes in risks.
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Each of these steps involves uncertainty. The efficiencies
of various control strategies are not precisely known. There are
uncertainties in the nodels used to predict transport and disper-
sion of pollutants. The behavior patterns of people are not well
known and it is these patterns which determne the relationship
bet ween concentrations and exposures. Breathing rates, clearance
paraneters, and other factors which govern the dose received from
a given exposure are sonewhat uncertain. And finally, nodels of
dose-response are subject to many uncertainties. For many poll u-
tants the dynamcs of dose-response and the functional form of
the relationship between dose and response, are poorly under-
st ood. In addition, the paraneters of dose-response nodels nust
often be estimated fromvery limted data.

To estimate the uncertainty in health risk estinates it is
necessary to first evaluate the uncertainty in each of these
el enents. Once these have been eval uated, methods for the analy-
sis of propagation of uncertainty may be enployed to determ ne
both the total uncertainty and the contribution of each el ement
to the total. (See for exanple, Bevington, 1969.) For exanple,
under a proportional nodel of risk, one of several methods may be
used to analyze the propagation of uncertainty. Wth a propor-
tional rodel the health risk, R, is estimted as the product of
potency, B and dose, B. If the errors in 8', and D are snal
(conpared to their typical values), independent, and symmetric

then Gauss' Law of Error Propagation gives
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% 8'%268 + D22, (3b)

wher e c% is the variance of the distribution of risk estimtes,
o3 and c%,are the variances of the estimates of the total
dose to the population and the potency of the chemcal for the
bi ol ogi cally average individual, respectively, and R D and @
are the mean val ues of these sanme quantitities. Alternatively,
if the estimates of g' and D are thought to be distributed

approxi mately lognornally around their nedians, then

Rp = B8'n Dp (4a)
ofnk = ofngr *+ ofnd (4b)

where Ry, g4 and Dy are the geonetric neans (or nedians) of
the distributions of estimates of risks, potency and dose and
o3 o $ a3 and ¢,p are the variances of the distributions of

the natural logarithns of these quantities.
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These nmethods would permt one to estinate the fraction of
total uncertainty due to uncertainty in dose estinmates, and
therefore to estimate the value of inproving dose estimates.

More advanced methods, such as Monte Carlo simulation, could be
used to analyze the propagation of uncertainty in nmore conplex
model s of ri sk.

One additional conplexity must be considered. Qur analysis
has been based upon the assunption that the form of the dose-
response nodel is known and that the only sources of uncertainty
are uncertainties in the dose estimates and in the potency esti-
mates. This is not always the case.

The bul k of our know edge about the risks associated wth
exposure to environnental carcinogens cones from either snal
rodent bioassay or occupational epidemology. |n both cases the
doses and dose rates tend to be several orders of magnitude above
those likely to be encountered in the anbient environnent. This
woul d not present difficulties for risk assessment if the shape
of dose-response curves were known. However, neither theory nor
enpirical evidence provides unanbi guous support for one nodel
(See, for exanple, Van Ryzin, 1980.)

To illustrate the difficulty this presents for risk
assessment consider the following exanple. |mmgine that only two
nodel s of dose-response were plausible: a proportional model and
a kth order nodel. See Figure 3. In order for these two nodels

to give simlar estinmates of risk in the range of experinentally
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Health Risk Estimate

k' Ta
a, da,
Dose or Exposure Level

Figure 3. Dependence of Health R sk Estinmate on Choice
of Dose- Response Mbdel [da=<:‘{e/1oP:|e
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observed doses, their paraneters nust be related. Thus their

estimates of |ow dose potency and of risks at |ow doses are also

rel at ed:
dr; (d,)/dd 10P(k-1) (5a)
dR, (d,)/dd k
R, (d
_.l_.i = lop(k-l) (5b)
Ry (dy)

Wiere p is the nunber of orders of magnitude that anbient doses
are bel ow experinental doses, and d4 is the level of typical
anbi ent doses. It is obvious from these relationships that when
anbi ent doses are several orders of magnitude bel ow experinenta
doses, the uncertainty as to the form of the dose-response node
may lead to quite large uncertainties in health risk estinmates.
A sinple nodification to our approach for estimation of the
val ue of inproved exposure estinmates acconmobdates this additiona
conpl exity. In the case of nodel uncertainty the probability

density function for health risk estimates is generated using:

pdf (R) = p; pdf (Ry) + ... + px pdf (Ry) (6)

whi ch involves a sum of products of conditional probability
density functions and estimates of the probabilities that each of
k possible nodels is correct. The remainder of the analysis is

unchanged.
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